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aLaboratory of Measurements in Process Engineering, Faculty of Mechanical Engineering, University of Ljubljana,
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Abstract

A coupled finite-volume (FV)/finite-element (FE) numerical model of the straight-tube Coriolis flowmeter is

considered. It uses the staggered partitioned algorithm with additional pressure predictor and interfield iterations to

minimize the time lag in the fluid–structure coupling procedure. The solutions were evaluated in terms of the

fundamental natural frequency of the vibrating system and the corresponding phase difference between the motion of

the symmetrically located sensing points on the measuring tube, which are actually exploited as the measuring effects of

the Coriolis flowmeter for the fluid density and the mass flowrate, respectively. The FV/FE numerical model was

validated by comparison with the solutions of the Euler beam and one-dimensional flow model, as well as with the

solutions of the Flügge shell and potential flow model. The respective simulations were performed for different lengths

of the measuring tube.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A fluid-conveying measuring tube that is maintained vibrating usually at its first natural frequency is the primary

sensing element of the Coriolis flowmeter. Due to the fluid forces acting on the tube wall the mode shape gets altered, an

effect that is exploited as the basic measurement principle for the mass flowrate. Besides that, the Coriolis flowmeter

also uses variations of the tube natural frequency for the estimation of the fluid density.

In order to study the measuring and other effects of Coriolis flowmeters, several models, both analytical and

numerical were employed, for the description of the fluid–structure interaction phenomena in the measuring tube. The

dynamics of the tube was mostly described by beam models (Euler and Timoshenko models), and the fluid flow in the

measuring tube was modelled as a one-dimensional flow. A distinction can be made among different solution strategies

of the proposed numerical models; exact and approximate analytical solutions for simple meter configurations

employing the Euler beam model [see, e.g., Sultan and Hemp (1989), Raszillier and Durst (1991), Kutin and Bajsić
e front matter r 2005 Elsevier Ltd. All rights reserved.
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(2002)], and FE simulations for the meters with more complex geometries employing the Timoshenko beam model.

These can be further subdivided into applications involving steady flows (Stack et al., 1993) and those involving

pulsating flows (Belhadj et al., 2000) through a measuring tube. For the description of the shell-type Coriolis flowmeter

that exploits higher circumferential modes for its operation, Kutin and Bajsić (1999) employed the Flügge shell

equations and potential flow theory. [A review of different mathematical models applicable in the analysis of the

fluid–structure interactions in beam and shell-type structures is offered by Paı̈doussis (1998) and Paı̈doussis (2003),

respectively].

All of the above-mentioned models incorporate fairly simple flow models, which do not enable the study of velocity

profile effects. A possibility to avoid solving a fully coupled model (with three-dimensional fluid flow) in study of such

effects is given by the weight vector theory (Hemp, 1994). Otherwise, a first step into the CFD analysis of velocity

profile effects was conducted by Bobovnik et al. (2004). Because their model does not account for the flow-induced

deformations of the tube, they estimated inlet flow effects by using the integral values of fluid forces acting on the inner

wall of the measuring tube. In this regard, it is our objective in this paper to present a more comprehensive coupled

model of a Coriolis flowmeter, capable of capturing the actual measuring effects. This model will serve in future

primarily for a detailed investigation of three-dimensional flow effects.

The numerical model we consider in this paper deals with the simplest design of the flowmeter, i.e. a straight and slender

measuring tube with clamped ends that vibrates at its first lateral mode. Several different lengths of the measuring tube are

analysed. The respective simulation of the coupled dynamics of the fluid and the solid domain is realized by linking the FV

code Comet 2.1 for the analysis of weakly compressible turbulent fluid flow (k2� turbulent model) and FE code Abaqus

6.3 for the analysis of deformable shell structures. Numerical aspects of the employed coupling procedure were discussed

in Mole et al. (2004). For purposes of building a corresponding numerical model, the free vibration of the measuring tube

conveying fluid is considered in the numerical analysis presented, despite the fact that the operation of Coriolis flowmeter

actually involves a forced vibration problem. This can be justified by the fact that the free vibration system is surely more

prone to eventual modelling deficiencies, and hence a study of such a problem contributes to better identification of

certain difficulties regarding the coupling procedure in the proposed numerical model.

Parameters that represent the key measurement characteristics of the Coriolis flowmeter (the natural frequency and

the phase difference) are obtained through the results of simulations and will be observed under steady state (periodic)

conditions. The numerical results are additionally compared to the solutions of the Euler beam and one-dimensional

flow model, as well as with the Flügge shell and potential flow model.

Coupled fluid–structure systems have already been subject of many systematic numerical studies and, based upon

them, numerical models for fluid–structure interaction can generally be classified into monolithic [see, e.g., Blom (1998),

van Brummelen et al. (2003), Michler et al. (2004)] and partitioned [see, e.g., Piperno (1997), Farhat and Lesoinne

(2000), Piperno and Farhat (2001)]. The monolithic methods treat the interaction of a fluid with a structure on their

common interface synchronously, whereas in the case of partitioned models the structure and the fluid equations are

solved in an alternate fashion with the interface conditions enforced asynchronously. Due to the sequential algorithm,

the latter are characterized by delayed structural deformation, which is usually lagging by one time step. In order to

minimize the time-lag effect in the staggered coupling procedure, the solution procedure used in our partitioned

approach is based on the pressure predictor and additional interfield iterations in each time step of the simulation (Mole

et al., 2004). The stability and accuracy issues, that are among other deficiencies and also benefits, which are

characteristic of partitioned methods, commented on by Felippa et al. (2001), remain also our primary concern in the

conceived partitioned analysis.
2. Model definition

The model of the Coriolis meter under discussion, which is schematically presented in Fig. 1, consists of a straight

measuring tube that is clamped at both ends and vibrates in the x–z plane in the first bending mode. The tube

deformations are small enough for linear elastic theory to be used. Geometric and material properties of the measuring

tube are its length L, internal diameter D, wall thickness h, and density rS, Young’s modulus E and Poisson’s ratio n.
The fluid flow, which enters the measuring tube, is steady and it has density rF and average velocity vF , so that its

mass flowrate is qm ¼ rF vFpD2=4. The measuring characteristic of the mass flowrate is the phase difference Df, which is

experienced in the motion of two sensing points S1 and S2, that are located symmetrically at a distance s (Fig. 1).

The considered model also neglects the effect of the motion sensors and possible added masses of the excitation

system. Furthermore, with the effect of the external excitation force being eliminated as well, the respective mechanical

response analysis reduces actually to a free vibration analysis of the coupled system.
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Fig. 2. Tube deflection in the Euler beam model.
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Fig. 1. Model of the Coriolis flowmeter with a straight measuring tube.
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3. Mathematical models used for comparison

3.1. Euler beam and one-dimensional fluid flow model

Using the Euler theory for bending of a slender beam, the measuring tube deflections will be represented by the

displacement field uxðz; tÞ, where ux stands for the lateral deflection in the x direction (Fig. 2). The effect of the internal

fluid flow is approximated by the one-dimensional plug-flow model. When considering the general model assumptions,

presented in Section 2, and additionally excluding the effects of the static fluid pressure and vibration damping, the

resulting equation of motion may be written as (Paı̈doussis, 1998)

EI
@4ux

@z4
þ MF v2F

@2ux

@z2
þ 2MF vF

@2ux

@z@t
þ ðMS þ MF Þ

@2ux

@t2
¼ 0, (1)

where EI is flexural rigidity of the tube, and MS and MF are the masses per unit length of the tube and the fluid,

respectively. The associated boundary conditions, considering the clamped ends, are as follows:

uxðz; tÞ ¼
@uxðz; tÞ

@z
¼ 0; z ¼ 0 ^ z ¼ L. (2)

The general solution of the governing equation (1), when a harmonic response in time is assumed, may be written in

complex form as follows:

ûxðz; tÞ ¼
X4
j¼1

Aje
ilj zeiot, (3)

where o is the angular frequency and lj are the eigenvalues. Both, the eigenvalues lj and the coefficients Aj are complex

in general. By introducing the functional expression (3) for the tube deflection ûxðz; tÞ into Eq. (1), a characteristic

polynomial in lj of fourth order is obtained, the solution of which are four eigenvalues lj ðj ¼ 1; 2; 3; 4Þ for a distinct

angular frequency o, a frequency that yields a non-trivial solution of Eq. (1) with at least one Aj6¼0. If the boundary

conditions (2) are expressed in terms of (3), a homogeneous system of four linear equations in complex form is formed,

with the Aj as unknowns. For non-trivial solution, setting the determinant of the coefficients equal to zero leads to a

transcendental equation for the angular frequency o, the solutions of which are the natural frequencies. The actual tube
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deflection is determined as the real part of the supposed complex solution (3):

uxðz; tÞ ¼ UxðzÞ cosðo t þ fxðzÞÞ, (4)

where Ux is the corresponding amplitude and fx is the initial phase, that characterizes a possible time delay in the

vibration response of different points. Using the phase values, the phase difference between the motion of the selected

sensing points can readily be calculated.

3.2. Flügge shell and potential fluid flow model

Using the Flügge theory of a thin cylindrical shell, the measuring tube deformation will be represented by the

displacements of its middle surface, i.e. the radial, circumferential and axial displacements ur, uy, uz in the respective

directions of the cylindrical coordinate system (r, y, z) (Fig. 3). Considering the general assumptions, made in Section 2,

and undamped vibrations, the equations of motion may be written as (Kutin and Bajsić, 1999)
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where x ¼ z=Rm, k ¼ h2=ð12R2
mÞ, g ¼ rSð1� n2ÞR2

m=E, Rm is the middle-surface radius and p is the fluid pressure on the

internal surface of the tube. For clamped ends, the boundary conditions are:

urðz; y; tÞ ¼
@urðz; y; tÞ

@z
¼ uyðz; y; tÞ ¼ uzðz; y; tÞ ¼ 0; z ¼ 0 ^ z ¼ L. (6)

The effect of the internal fluid flow is approximated by linearized potential flow theory. The solution of thus defined

problem follows the travelling wave procedure presented in Paı̈doussis (2003). If a general solution for the tube

displacements, which are harmonic in time and periodic circumferentially, is written in complex form as

ûrðz; y; tÞ ¼
X8
j¼1

ûr;jðz; y; tÞ ¼
X8
j¼1

Aje
ilj z cos ny eiot; ûyðz; y; tÞ ¼

X8
j¼1

Bje
ilj z sin ny eiot

ûzðz; y; tÞ ¼
X8
j¼1

Cje
ilj z cos ny eiot, ð7Þ

the fluid pressure on the tube surface, excluding the effect of static pressure, can be written as

p ¼ �rF

X8
j¼1

In ljD=2
� �

dIn ljr
� �

=dr
��
r¼D=2
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� �
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Here, Inð Þ is the nth order modified Bessel function of the first kind and n is the circumferential wave number, which is

n ¼ 1 for the bending mode under discussion. Although the derivation of the fluid pressure does not include the realistic
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Fig. 3. Tube displacements in the Flügge shell model.
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boundary conditions at the tube ends, that are ur ¼ 0 for zo0 and z4L, this simplification may have an influence only

for relatively short tubes, as commented upon by Shayo and Ellen (1974).

Introducing the assumed solutions for displacements and pressure (Eqs. (7) and (8)) into governing equations (5)

yields a homogeneous system of three linear equations with Aj, Bj, and Cj as complex unknowns. For non-trivial

solutions, the determinant of the coefficients has to vanish, thus yielding a transcendental equation in lj. For eight

boundary conditions (6), eight values of lj (and eight solutions Bj=Aj , Cj=AjÞ are of interest. It is appropriate to choose

the eigenvalues with the smallest modulus, because they contribute the most to the formation of the mode shapes

(Paı̈doussis, 2003). Finally, if the boundary conditions (6) are expressed in terms of the functional expressions (7), a

homogeneous system of eight linear equations in Aj is formed. By setting the determinant of the coefficients equal to

zero for non-trivial solutions, one obtains a transcendental equation in the angular frequency o, with natural

frequencies as respective solutions. The phase difference between the motion of the selected sensing points will be

determined from the phase variations of the radial displacement ur at y ¼ 0, which can be written in the familiar form

urðz; tÞ
��
y¼0

¼ UrðzÞ cosðot þ frðzÞÞ. (9)

This simplification is reasonable because uyjy¼0 ¼ 0 and amplitudes of uz are relatively small.
4. Coupled fluid–structure interaction model

4.1. Fluid dynamics problem

4.1.1. Governing domain equations

The fluid flow through the tube is assumed as isothermal, Newtonian and weakly compressible. Its three-dimensional

spatial distribution ðx 2 OF Þ and time evolution ðt40Þ are governed by the conservation of mass and momentum

principles, which will be represented in their integral form. For a fluid with the density rF and absolute velocity vF of the

particles in the fluid domain OF , the continuity and momentum equations read as follows:

@

@t

Z
OF

rFdOþ

Z
GF

rF vF � vSð Þ 
 n dG ¼ 0, (10)

@

@t

Z
OF

rFvF dOþ

Z
GF

rFvF vF � vSð Þ 
 n dG ¼

Z
GF

TF 
 n dGþ

Z
OF

fF dO. (11)

In the above equations the constraints on the fluid flow, as imposed by the motion of the surrounding tube wall, and

prescribed by the respective surface velocities vS on the fluid domain boundary GF (n being the normal vector at the

boundary GF Þ are taken fully into account. Vector fF in the momentum equation (11) stands for the volume forces that

act inside the domain OF , and TF is the resulting stress tensor, which is composed of the viscous stress tensor Tf and

Reynolds stress tensor Tt:

TF ¼ Tf þ Tt (12)

The viscous stress tensor Tf is defined as

Tf ¼ mðgradvF þ ðgradvF Þ
T
Þ �

2

3
m div vF I� pI (13)

with p being the fluid pressure, I the unit tensor and m the dynamic viscosity, while the Reynolds stress tensor Tt, which

results from fluid turbulence, is given according to the assumed k-e turbulence model by

Tt ¼ mtðgrad vF þ ðgrad vF Þ
T
Þ � 2

3
ðmt div vF þ rF kÞI. (14)

In the above, the turbulent viscosity mt depends on the turbulent kinetic energy k and its dissipation rate e, the quantities
that are obtained from a solution of two additional transport equations (Pope, 2000).

4.1.2. Initial and boundary conditions

For the moment, let us assume that both the domain OF and its boundary GF are known in time. As we are mainly

interested in the determination of the fluid response during a vibration of the tube under some prescribed inlet flow

conditions, the initial velocity field v0F and the stress field T0
F in the fluid may be assumed identical to the steady state
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fields that correspond to the fully developed velocity profiles, reached in the tube at rest. Those can be actually obtained

upon a preliminary simulation of the flow in a sufficiently long tube under considered inflow conditions and prescribed

ambient pressure at the outflow boundary. In a simulation of the vibrating tube, the same fully developed velocity

profile v0F can be set as the prescribed boundary condition at the inflow boundary, while at the outflow boundary the

ambient pressure p0 is imposed. No-slip conditions were presumed at the fluid–tube interface.

Considering the geometry of the investigated measuring tube and physical nature of the associated boundary

conditions, the boundary GF can be decomposed into three parts: Ginflow, GtubeðtÞ and Goutflow (Fig. 1) with respective

boundary conditions for the assumed viscous flow written as:

vF ðx; tÞ ¼ v0F ðxÞ; x 2 Ginflow,

pðx; tÞ ¼ p0ðxÞ; x 2 Goutflow,

vF ðx; tÞ ¼ v�Sðx; tÞ; x 2 GtubeðtÞ,

vSðx; tÞ ¼ 0; x 2 Ginflow [ Goutflow. ð15Þ

Here, we also assumed that the velocity v�S of the external cylindrical boundary of the considered fluid volume domain is

prescribed.
4.2. Structural dynamics problem

4.2.1. Governing domain equations

The measuring tube of the considered Coriolis flowmeter is analysed as a deformable shell structure occupying a solid

domain OS, with GS being the corresponding boundary. The three-dimensional spatial distribution ðx 2 OSÞ and time

evolution ðt40Þ of the respective mechanical response is governed by conservation of momentum principles as well, but

for convenience, a variational integral formulation will be used. The corresponding equation of motion can be derived

by Hamilton’s variational principle, which may be written as

Zt2

t1

d W p � W k

� �
dt ¼ 0 (16)

where Wp and Wk are, respectively, the total potential energy and the total kinetic energy of the considered moving

structure.

The total potential energy Wp is expressed as a sum of the strain energy corresponding to the actual deformation of

the shell, and the potential of the load corresponding to the actually applied conservative external forces. Considering

the nature of the case investigated, only surface forces qS, acting upon the moving shell boundary through the respective

displacement field uS, are taken into account in the load potential, thus yielding the following integral expression for the

total potential energy:

W p ¼
1

2

Z
OS

TS : eS dO�

Z
GS

qS 
 uS dG. (17)

In the above equation eS and TS are, respectively, the strain and the stress tensor in the deformed shell structure.

The total kinetic energy W k of the moving structure can be written as

W k ¼
1

2

Z
OS

rSðvS 
 vSÞ dO, (18)

where rS is the density of the tube material and vS is the velocity field of the structure.
4.2.2. Initial and boundary conditions

For the moment let us assume that external actions, either in a form of the applied surface forces q�S or imposed

displacements u�S on the boundary GS, are known in time. Being interested in the determination of the structural

response during a vibration of the tube under some prescribed inlet flow conditions, the initial configuration O0
S is

assumed identical to the tube configuration at rest. For a complete kinematic definition of the straight vibrating tube at

time t ¼ 0, however, respective velocities v0S and accelerations a0S must be given. The corresponding initial mechanical

state is assumed unstressed and unstrained; therefore T0
S ¼ e0S ¼ 0. In view of the above assumed external actions the
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respective boundary conditions are written as

uSðx; tÞ ¼ u�Sðx; tÞ; x 2 Gu
SðtÞ,

TSðx; tÞ 
 nðx; tÞ ¼ q�Sðx; tÞ; x 2 GT
S ðtÞ, ð19Þ

where both, u�S and q�S, are known prescribed quantities.

4.3. Coupled fluid–structure dynamics problem

At the common interface ðGF \ GSÞ in a coupled fluid–structure problem, which will be denoted by Gtube (Fig. 1),

none of the problem variables is given explicitly. Since at that interface the stress–displacement compatibility between

the field variables of the respective systems in contact must be respected, this relation is established implicitly by

imposing kinematic and contact stress constraints. With n denoting the normal vector at the interface Gtube(t) these

constraints are formulated, always assuming viscous flow, as follows:

TF ðx; tÞ 
 nðx; tÞ ¼ TSðx; tÞ 
 nðx; tÞ,

uF ðx; tÞ ¼ uSðx; tÞ; x 2 GtubeðtÞ. ð20Þ

4.4. Numerical model of the coupled fluid–structure problem

In view of an approximate solution to the above-stated coupled fluid–structure problem, we use two different

numerical approaches. For a solution of the fluid dynamics problem the FVM is used, while the structural dynamics

problem is considered within the FEM framework. The computer simulation of the fluid–structure interaction in the

measuring tube of the considered Coriolis flowmeter will be thus performed by an appropriate coupling technique

exploiting the computed results of each individual problem. The commercially available codes Comet 2.1 (FVM) and

Abaqus 6.3 (FEM) will be used, respectively, for solution of the specified tasks.

Briefly, the Comet code uses the FVM to transform the governing differential equations into finite-difference

equations. The unsteady terms are discretized in accordance with a first-order two-time-level implicit scheme, while the

convective and diffusive terms are approximated by using the second-order central difference scheme. The convergence

in a single time step is reached when the sum of the absolute residuals for all equations falls by five orders of the

magnitude.

In the Abaqus code, which solves a dynamic problem in accordance with the FEM, the solution is sought by dividing

the total response time of the system into time intervals, called time steps. The dynamic equilibrium equations are

solved and the values of the unknowns are determined at the end of a time step, based on the knowledge of their values

at the beginning of the considered time step. The Newmark formulae are used for implicit time displacement and

velocity integration.

In the numerical model of the vibrating Coriolis flowmeter the fluid and the structural domain are discretized in

accordance with the applied numerical approaches (Fig. 4). The discretization is performed in such way that the two

meshes, based respectively on the FE and the FV discretization, coincide at the fluid–structure interface. Consequently,

the finite-volume mesh follows in time the motion of the tube, which is actually modelled as a shell. In order to keep the

same finite-volume mesh topology as time progresses, the displacements of internal nodes are correspondingly adjusted

in each time step.

4.4.1. Coupled fluid–structure simulation strategy

In principle, considering the decomposition of the fluid-conveying measuring tube into two interacting domains—the

structure and the fluid domain (Fig. 4), and different solvers used for the computation of the respective structural and

fluid response, the coupled computation can be performed iteratively, considering fluid–structure interaction and

mutual fulfilment of energy balance at the common interface. The iteration loop starts with the computation of the

structural response, performed on the undeformed tube upon prescribed initial kinematic conditions and loads, as

obtained by the steady state flow conditions in the tube at rest. The induced vibration yields, in the first time step of the

coupled simulation, the displacement and velocity vectors of the tube. With the new tube geometry and computed

velocity vectors imposed as the boundary conditions in the fluid flow simulation, the respective pressure and velocity

response of the fluid for the same time interval are obtained as the response of the fluid to the induced vibration of the

tube. In the next time step, considering the computed kinematic state of the structure from the previous time step as

actual initial conditions, and with application of the fluid forces (obtained by the respective pressure distribution that is
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computed in the fluid at the end of the previous time step) as actual boundary conditions, the displacement and velocity

vectors of the tube are determined anew. The described cyclic procedure of alternate exchange of the data between the

two computational codes follows the following pattern: with given initial and boundary conditions, data are created

within one code to be used in the other code as initial and boundary conditions, the computation thus yielding the

respective data to be used in the subsequent numerical step as updated initial and boundary conditions for the other

code.

The procedure just described works in principle, but in its elementary version it needs rather a long time to converge.

Further numerical investigations have proven that a rather fast convergence of the numerical response can be obtained

by relying for the approximation of the fluid stress tensor for a considered time step upon the results of the previous

three time steps, and by applying the fluid load in a smooth way (Mole et al., 2004). In particular, with the gradual

application of the fluid load to the solid structure being accomplished within the first 120 time steps, a converged

vibration is thus obtained in approximately eight cycles. To minimize the time lag that is introduced by the staggered

coupling procedure, additional interfield iterations were employed in each time step of the simulation.
4.5. Estimation of the natural frequency and the phase difference

Considering that the basic measuring effects of the investigated Coriolis flowmeter are the established natural

frequency of the measuring tube and the phase difference exhibited in the motion of two symmetrically positioned

sensing points S1 and S2 (see Fig. 1), those are in fact the quantities we have focused on, and represent actually the final

results of our numerical simulation. Both quantities were estimated from the velocity responses at the sensing points

position ðvS1 ;x; vS2 ;xÞ using the digital signal processing in LabVIEW environment.

Since we were dealing with free oscillation of the tube, the velocity responses (signals) at the sensing points were

expected to be sinusoidal with exponentially decaying amplitude. For subsequent signal normalization, the resulting

signals were first approximated, using the Levenberg–Marquardt fitting algorithm, by the following function:

vAðtÞ ¼ VA sinð2pf Að1� d2AÞt þ fAÞe
�2pf AdAt þ VDC , (21)

where VA is the amplitude, f A is the frequency, fA is the phase, dA is the damping factor and VDC is the DC value of the

signal. In the following step, the values obtained with this approximation were used for normalization of the DC value
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of the signal and its decaying amplitude, using the following expression:

~vS;xðtÞ ¼
vS;xðtÞ � VDC

VAe�2pf AdAt
. (22)

Next, the low-pass filter (cut-off frequency � f A þ 40HzÞ was applied to both responses with the intention of

eliminating the higher frequency components and the high-frequency noise, respectively. After conducting these

operations on the total signal length, the signals were split into segments of two periods, in steps of half a period

from the beginning towards the end of the signal. Splitting the signals into segments allowed us further to observe

the transient response of the considered quantities and to assess whether the results converge to a steady state

solution.

The initial and the terminal intersection with the time axis, considering linear interpolation, were determined for each

investigated segment of the velocity response, and the corresponding frequency f characterizing the observed segment

was calculated directly from the obtained time values at the intersections.

The phase for each segment was obtained employing the DFT algorithm, and the phase difference Df was calculated

as the difference between the phase values of the corresponding segments.
5. Numerical simulation results and comparative analysis

This section discusses the results that have been performed in the context of the coupled fluid–structure modelling, as

presented in Section 4. Explicitly, the natural frequency of damped vibration (corresponding to the first lateral mode

shape of the measuring tube) and the phase difference between the two sensing points positioned symmetrically to the

tube centre, have been considered. The results of numerical simulations were further compared with the solutions of the

two analytical models, presented in Section 3. For a fully developed inlet velocity profile with an average fluid velocity

of 5 m/s, the simulations were carried out for five particular cases, differing in the length of the measuring tube

(L/D ¼ 10,15,20,25 and 30), while D was kept constant at 0.02m and the lengths of the inlet and outlet section of the

fluid domain remained fixed at 0.4m. All other properties of the measuring tube and the fluid, which are listed in Table

1, remained unaltered for all the simulations conducted.

As in the numerical simulation the measuring part of the tube is forced into oscillation by prescribing an initial

velocity field corresponding to the first vibration mode, the respective kinematic conditions considered in the analysis

are as follows:

uSðx; 0Þ ¼ 0,

vSðx; 0Þ ¼ b0AðxÞ; x 2 OS,

aSðx; 0Þ ¼ 0, ð23Þ

with the amplitude vector field A(x) being determined independently in accordance with the tube first natural mode

shape of the clamped–lamped measuring tube. The scalar b0 isconstant multiplier, its magnitude being adjusted to meet

the maximum deflection requirement, which is set for the tube with the fluid at a value of about D/10.

In addition to the effects of the numerical grid density and the time step size, the evolution of the observed parameters

(the natural frequency and the phase difference) is investigated further in this section. In the end, comparisons of the

natural frequency and the phase difference for the three models considered (Euler beam and one-dimensional flow;

Flügge shell and potential flow; and coupled numerical model) are presented.
Table 1

Tube geometry and physical properties

Geometry Tube (Ti)

Lm (m) 0.2y0.6 rS (kg/m3) 4510

Lin (m) 0.4 E (GPa) 102.7

Lou (m) 0.4 n — 0.34

D (m) 0.02 Fluid (H2O)

h (m) 5� 10�4 rF (kg/m3) 1000

s (m) Lm/2 m (Pa s) 1.002� 10�3
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5.1. Discretization of the computational domain

First, the influence of the space and time discretization on convergence of the solution and its accuracy was

investigated. This investigation was performed for a particular case, actually for the parameter values given in Table 1

and for the tube with the ratio L=D ¼ 20. To find out the influence of applying different numerical grid densities, three

different lengths of elements in the axial direction of the measuring tube were presumed: 10, 5 and 2.5mm. For the

discretization of the cross-section of the fluid domain an unaltered grid pattern was applied. In all cases the length and

the number (40) of circumferential boundary elements are equal for the fluid and for the solid domain, thus perfect

matching of the boundary elements across the interface is ensured, and no additional interpolation procedure is needed

at the data exchange between the two domains. For the time integration a time step equal to 1.72� 10�5 s was applied,

which corresponds to approximately 140 time steps per period of vibration. The values of the natural frequency and the

phase difference after 2300 time steps (approximately 16 periods of vibration) were compared for the assumed spatial

discretizations (see Fig. 5). As expected, the largest deviation of the results is evidenced for the coarsest grid (10mm),

but the frequency (and the phase difference) obtained on the grids with the element lengths of 5 and 2.5mm, deviates by

for 0.06% and 0.13%, respectively.

Next, the effect of two different time step sizes was investigated for the computational grid with element length of

5mm.Time step sizes were set to approximately 1/140 and 1/70 of the oscillation period that yields, respectively,

dt1 ¼ 1.72� 10�5 s and dt2 ¼ 3.44� 10�5 s. In both cases the absolute values of the natural frequency and the phase

difference deviated by less than 0.1%, but the vibration damping factor in the case with the larger time step was twice as

large as in the first case, an issue that is further discussed in Section 5.2.

Based on the results obtained, a the computational grid with elements of 5mm length in the axial direction of the tube

and the time step size of approx. Oscillation period of 1/40 was selected for further simulations. The time step sizes

selected with respect to the actual ratio L/D of the measuring tube are given in Table 2.
5.2. Evolution of the natural frequency and the phase difference

In Fig. 6 is displayed the velocity response at the sensing point S1, positioned on the inlet half of the measuring tube

as indicated in Fig. 1, for the measuring tube of L=D ¼ 20. Observing this velocity response we must be aware that its

initial part does not represent the true physical transient response of the mechanical system, but corresponds to the

smooth application of the fluid pressure and the adopted initial conditions, which were selected so as to assure a steady

state response in as short a computational time as possible. It is obvious that the initial velocity, as well as the natural
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Fig. 5. Variation of the natural frequency and the phase difference for three different grids with elements of axial length 2.5, 5 and

10mm, respectively ðL=D ¼ 20Þ.
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Fig. 6. The variation of the velocity signal at sensing point S1 obtained with numerical model (L/D ¼ 20).

Table 2

Time step values with respect to the ratio L/D of the measuring tube

L/D 10 15 20 25 30

dt (s) 4.76� 10�6 1.00� 10�5 1.72� 10�5 2.65� 10�5 3.75� 10�5
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frequency, are reduced to the value characteristic of the fully coupled system already during the first period of vibration.

This is quite in accordance with the computationally exerted fluid pressure on the solid interface. The fluid pressure is

actually applied to its full amount gradually, over a time interval corresponding to some portion of the vibration period.

The damping factor ðdÞ of the vibration of the tube conveying fluid, determined from the velocity response at the

sensing points, considering the same case presented in Fig. 6, is equal to 1.8� 10�2, whereas the damping of the empty

tube equals to 4.5� 10�3. As already emphasized in the previous subsection, the magnitude of damping of the

fluid–solid system depends strongly on the time steps size used in a transient simulation. As commented for example by

Piperno and Farhat (2001) and Piperno (1997), damping or amplification of a simulated response, obtained with

partitioned staggered algorithms, can be attributed to improper energy conservation on the interface between the two

domains. In the case under consideration it was found that the damping factor increased practically proportionally with

the time step size, whereas applying the second-order three-time-level integration scheme for the fluid solver reduced the

damping factor by approximately 30%, but immensely prolonged the computational time. With respect to the case of

the empty tube it is then mostly the numerical procedure, and to a certain degree also the effect of the presence of the

fluid in the tube, that contribute to the augmentation of the system damping.

In Figs. 7 and 8 the evolutions of the natural frequency and the phase difference (calculated using the algorithm

presented in Section 4.5) are displayed along the signal length of 2300 time steps for the measuring tube with L/D ¼ 20.

The natural frequency is higher during the first periods and reaches the steady state value after approximately 8

vibration cycles in the observed case. The higher values of the frequency experienced in the early stages are due to the

coupling algorithm procedure; namely, as explained by Mole et al. (2004), the total pressure resulting from the flow

simulation is entered in the solid solver in the full amount only after 120 time steps, which means that in the early stages

of the simulation the tube responds as being empty or filled with a fluid of lower density; consequently, in the initial

phase, higher natural frequencies than later in the simulation process are shown. A similar instability in the phase

difference in the initial stages of the simulation, which originates from the same cause, is visible in Fig. 8, and disappears

after 8 periods of vibration.
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5.3. Steady state values of the natural frequency and the phase difference

In this part of the paper, the results obtained from the coupled fluid–structure numerical model are compared with

the analytical solutions obtained, respectively, with the Euler beam and one-dimensional flow model and the Flügge

shell and potential flow model. To achieve the steady state regime, the numerical simulations were conducted for 2300

time steps (approximately 16 periods of vibration). The natural frequency and the phase difference between the sensing

points S1 and S2 were determined as the average of the last four calculated values, and their numerical stability is

estimated by the maximum deviation from the average value. The frequencies and the phase differences are stabilized

within 0.02% and 0.10%, respectively, except in the case of L=D ¼ 10, where the frequency is stable within 0.10% and

the phase difference within 1.40%.

Before proceeding to the discussion of the results, we have to emphasize that the solutions of comparative models

refer to undamped vibrations (contrary to our numerical results that are obtained from the damped responses). This,
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however, does not importantly influence the presented results. The natural frequency of damped vibration is lower than

the natural frequency of undamped vibration by the factor ð1� d2Þ1=2 (approximately 0.02% in our simulations). The

expected influence on the phase difference was analysed by Kutin and Bajsić (2002) and is proved to be of the same

order of magnitude as for the natural frequency.

In Fig. 9 the natural frequencies for different lengths of the measuring tube are presented for the three models

compared. In the given scale the natural frequency obtained with the numerical simulations seems to coincide with

the Flügge shell and potential flow model; therefore, the deviation of the results relative to the Euler beam and

one-dimensional flow model for both the Flügge shell and potential flow and the coupled numerical model, is pre-

sented in Fig. 10 separately. The deviation of the natural frequency relative to the Euler beam and one-dimensional
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Fig. 9. Comparison of the natural frequency obtained with the employed models (Euler beam and one-dimensional flow, Flügge shell

and potential flow, and coupled numerical model) for various lengths of the measuring tube.
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Fig. 10. Deviations of the natural frequency for the Flügge shell and potential flow model and the coupled numerical model relative to

the Euler beam and one-dimensional flow model for various lengths of the measuring tube.
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flow model is defined as

ef ¼
f � f E

f E

� �
, (24)

where f E represents the value of the natural frequency of the observed system according to the Euler beam and one-

dimensional flow model.

It is obvious that the natural frequency obtained with the proposed numerical model follows the same trend as the

values obtained from the Flügge shell and potential flow model (the difference between them is a bit less than 1% over

the whole observed range), but on the other hand it is also evident, that the Euler beam and one-dimensional flow

model predicts much higher first natural frequencies for the tubes with a smaller ratio of L=D (almost up to 14%). In

contrast, for the highest ratio of L=D, this difference is smaller than 3% for all three models.

Next, the values of the phase difference for the observed models are presented in Fig. 11. The values from all three

models follow the same trend, with the Euler beam and one-dimensional flow model predicting the lowest and the

proposed numerical model the highest values of the phase difference. To investigate these differences a little more in

detail, we introduce the deviation relative to the Euler model and one-dimensional flow (analogous to equation (24) for

the frequency):

eDf ¼
Df� DfE

DfE

� �
, (25)

where DfE is the value of the phase difference obtained with the Euler beam and one-dimensional flow model.

As seen in Fig. 12 the values predicted with the Flügge shell and potential flow model and with the numerical model

are in a very good agreement with each other (approximately within 2.5% for the shortest two tubes, and approximately

1.5% for other simulated geometries), but differ noticeably from the results of the Euler beam and one-dimensional

flow model. For the shortest measuring tube considered ðL=D ¼ 10Þ the Euler beam and one-dimensional flow model

predicts more than 35% lower values of the phase difference. Indeed, such dimensions of the measuring tubes are not

common in the industrial design of Coriolis flowmeters, but even for tubes with a greater L=D the Euler beam and one-

dimensional flow model still underpredicts the phase difference for more than 5%.
6. Conclusions

A partitioned numerical approach for treating the fluid–structure interaction in the measuring tube of a Coriolis

flowmeter is presented. Computationally coupled analysis of the three-dimensional discretized model was realized by
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coupling of a FV code for the fluid flow and a FE code for the structure. The analysis of the computed results (the

natural frequency and the phase difference between the sensing points positioned symmetrically on the inlet and outlet

halves of the tube, respectively) is based on comparison with the analytical solutions of (i) the Euler beam and one-

dimensional flow model and (ii) the Flügge shell and potential flow model. At a constant mass flow rate of the viscous

fluid, the natural frequencies and the phase differences were observed for five different lengths of a tube with the same

cross-sectional area, i.e. the same diameter and the same wall thickness.

In order to determine the natural frequency, the free vibration of the measuring tube was simulated. Due to the

energy loss on the coupling interface, excessive damping is predicted, which is mainly due to the employment of the two-

time-level implicit time integration scheme and the time step size used. However, it was found that the increased

damping of the system, using the presented algorithm (Section 4.5), does not have a significant influence on the

estimation of the natural frequency and the phase difference, which are the key results of the presented study.

The comparison of the natural frequencies for the considered three models showed similar trends in all cases. The

results of the Euler beam and one-dimensional flow model predicted the highest frequencies (up to 14% higher than the

other two models for L/D ¼ 10). The natural frequencies obtained with the Flügge shell and potential flow model and

the numerical model deviate over the entire observed range of tube lengths (L/D ¼ 10, 15, 20, 25 and 30) by less than

1%. Similar observations apply for the phase difference, where the Euler beam and one-dimensional flow model

predicts the lowest values of the phase differences for all the tubes, while the corresponding numerical model yields the

highest ones. The deviation between them is approximately 35% for the shortest tube (L/D ¼ 10) and about 6% for the

longest tube (L/D ¼ 30). The results of the Flügge shell and potential flow model coincide much better with predictions

of the numerical simulations (deviation is approximately 2% over the entire range of the tube lengths observed).

The authors have also tested the Timoshenko beam and one-dimensional flow model (Stack et al., 1993). As expected

that model performs better than the Euler beam and one-dimensional flow model and its results (for the considered

slender tube configuration) deviate from those of the proposed numerical model of the same order of magnitude as

those of the Flügge shell and potential flow model. On the basis of the results presented herein and the study of

Bobovnik et al. (2004), where it was established that the actual fluid forces are in very good agreement with the one-

dimensional fluid flow assumption for the slender-type tube configuration, we can claim that significant differences

between the models do not lie in the different treatment of the fluid flow, but originate from different approaches used

in modelling of the structural domain.

The numerical model presented incorporates a three-dimensional analysis of fluid flow in a deformable shell structure

and, with regard to its modelling assumptions, is certainly believed to be the best among the compared models. In

future, it can be employed for the study of three-dimensional flow effects (velocity profile effects) or other fluid

parameters (temperature, pressure, compressibility, etc.) and can be realized for any arbitrary design specifications of

industrial flowmeters.
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